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Abstract—Compressive sensing (CS) has been viewed as a
promising technology to greatly improve the communication
efficiency of data gathering in wireless sensor networks. However,
this new data collection paradigm may bring in new threats
but few study has paid attention to prevent information leakage
during compressive data gathering. In this paper, we identify
two statistical inference attacks and demonstrate that traditional
compressive data gathering may suffer from serious information
leakage under these attacks. In our theoretical analysis, we
quantitatively analyze the estimation error of compressive data
gathering through extensive statistical analysis, based on which
we propose a new secure compressive data aggregation scheme
by adaptively changing the measurement coefficients at each
sensor and correspondingly at the sink without the need of time
synchronization. In our analysis, we show that the proposed
scheme could significantly improve data confidentiality at light
computational and communication overhead.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been widely de-

ployed for various applications such as environment monitor-

ing [1], event detection [2]–[4], target counting and tracking

[5]–[8], just to name a few. A major task of the sensors for

such an application is to report the relevant data to a sink

node. Due to the strict energy limitation and the common

vulnerability of WSNs, secure in-network data aggregation

has been proposed as an essential approach to addressing the

efficiency and security issues of data gathering in WSNs.

Various secure data aggregation techniques have been in-

vestigated to collect the real sensor signals [9] [10]. These

approaches can be classified into three categories, namely hop-

by-hop encrypted data aggregation [11], end-to-end encrypted

data aggregation [12], [13], and secure hierarchical data ag-

gregation [14]. A common weakness of these approaches is

the significant communication overhead brought by in-network

data processing, which brings significant challenges for the

sensor network to improve both communication and data

aggregation efficiency in practice.

Recent advances in Compressive Sensing (CS) provide a

great opportunity to improve the communication and data

aggregation efficiency in wireless sensor networks [15] [16]

[17] [18] [19]. The basic idea is to multiply each raw sensor

reading with a random measurement vector and then simply

sum the partial projected results at each non-leaf node along

the routing paths (tree) to the sink. Such a process is termed

compressive data gathering, or compressive sensing based
data aggregation. By exploiting the data redundancy in the

spacial domain, compressive data gathering can accurately

reconstruct the original sensor readings by a relatively small

number of samples at the data sink, and the operations at each

node are much simpler compared to existing non-CS based

approaches. Thus the communication and data aggregation

efficiency in compressive data gathering can be significantly

improved. Nevertheless, the security of compressive data gath-

ering is generally overlooked.

In this paper, we address the security issues of compres-

sive data gathering in WSNs and identify the possibility of

information leakage during data aggregation via statistical

inference. We show that if there exists a node compromised

by an attacker, the data of the subnetwork controlled by the

compromised node could be released to the attacker via the

following two statistical attacks: controllable event triggering
attack and random event triggering attack. Comparing with the

related literature summarized in Section II, we have identified

the following unique contributions of this paper.

• We address the security issues of compressive data gath-

ering in WSNs and demonstrate the possibility of serious

information leakage when a regular sensor node is com-

promised. To our best knowledge, this is the first work

to investigate the security of compressive data gathering.

• We propose two statistical inference attacks that could

cause information leaks via a compromised node in

compressive data gathering. An attacker only needs to

compromise one sensor in the network, which implies

the easiness and high possibility of information leakage.

In our evaluation study, we demonstrate that the proposed

attacks could effectively recover the sensor readings along

the aggregation tree with an acceptable fidelity.978-1-4799-3360-0/14/$31.00 c©2014 IEEE
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• We design a new Secure Compressive Data Gathering

Scheme (SCDG) to prevent possible statistical inference

based attacks during the data gathering process under the

existence of compromised nodes. The evaluation results

indicate that the proposed scheme could well protect the

network under an affordable SNR loss of 3db on average.

The rest of the paper is organized as follows: Section II

presents the most related work. The preliminaries, models, and

assumptions are introduced in Section III. Section IV details

the two statistical inference attacks and Section V provides

our theoretical analysis and evaluation results. According to

our analysis on these two attacks, we propose a new secure

compressive data gathering scheme (SCDG) in Section VI, and

conclude the paper in Section VII.

II. RELATED WORK

In this section, we briefly overview the data aggregation

techniques in WSNs, summarize the approaches for secure

data aggregation, and then outline the most related work of

compressive data gathering.

Distributed source coding [20] [21] [22]. [23] is a typical

data gathering approach that explores the correlation among

multiple correlated sensor readings for in-network data com-

pression. Considering that sensor readings in a WSN have

temporal and spatial correlations, clustered data aggregation

[24] [25] [26] suggests separating the entire network into

several clusters and each cluster is represented by one single

node [27]. Another promising data gathering technique is the

collaborative wavelet transform [28] [29], which compresses

the sensor data by wavelet transforms. Due to in-network

processing, all these methods incur significant communication

and computational overhead, which brings difficulties for

sensors to improve their data aggregation efficiency in practice.

Recently, the Compressive Sensing (CS) theory motivates

compressive data gathering to reduce the energy consumption

and greatly improve the communication and data aggregation

efficiency (e.g., [15] [16] [17] [18] [19]). Based on the CS

theory [30] [31], when a signal can be sparsely decomposed

in some domain, it can be accurately reconstructed by a

relatively small number of samples based on sparse recovery

techques such as �1-minimization [30], Orthogonal Matching

Pursuit (OMP) [32], Greedy Matching Pursuit (GMP) [5], and

Regularized Orthogonal Matching Pursuit (ROMP) [33]. In

compressive data gathering, each sensor reading is multiplied

with a measurement vector and all the results are combined

at the non-leaf nodes along the routing tree to reach the

sink. The component that consumes the most energy is the

signal reconstruction, which is processed at the sink; while the

data aggregation at the sensors is relatively lightly-weighted.

Since compressive data gathering does not cause unbalanced

energy consumption in the network, it performs well on load-

balancing and can help to extend the network lifetime [34].

Due to the typically remote and hostile deployment envi-

ronments, it is essential to enforce secure data aggregation

for high data fidelity [9] [10]. Secure data aggregation could

be considered from three categories: hop-by-hop encrypted

data aggregation, end-to-end encrypted data aggregation, and

secure hierarchical data aggregation. Hop-by-hop encrypted

data aggregation is proposed in [11], which dynamically

partitions the nodes within a tree topology into multiple

groups. End-to-end encrypted data aggregation [13] makes use

of digital signatures and homomorphic encryption to achieve

confidentiality. The detection of an intruder’s manipulation

over compromised nodes during data aggregation is studied in

[14]. SIA [35] requires a Merkle-hash-tree based commitment

to the data, through which users can ask the aggregator for

authentication later. The integrity of the aggregation’s result

can be verified with the help of multiple witness nodes [36]. It

can also be protected by cluster-based privacy preserving data

aggregation [37]. In [38], the VMAT protocol realizes security

through revoking malicious sensors in a timely manner and

thus the capability of attackers can be reduced.

Existing works such as [39], [40] have made effort to protect

the secrecy of compressive sensing. However, they mainly

focus on outsider attacks, e.g., eavesdroppers. In this paper,

we design two statistical inference attacks on compressive data

gathering, which can recover a general measurement matrix.

We also propose corresponding countermeasures against these

attacks. The most related work of measurement matrix recov-

ery is [41]; but it could only recover certain structured mea-

surement matrices. In our study, via the help of a compromised

node, an attacker can recover a general measurement matrix.

III. PRELIMINARIES, MODELS, AND ASSUMPTIONS

A. Compressive Sensing based Data Aggregation in WSNs

Suppose a signal x, denoted by a N × 1 vector, can be

sparsely decomposed in some domain Ψ:

x = Ψs (1)

where Ψ is an N×N basis matrix and s is the representation

of x in Ψ. We say x is K-sparse in Ψ when only K elements

of s[j] are nonzero and the other N −K elements are zero.

In this paper, we consider a static network of N sensors,

in which a sink node collects data from various sensors along

aggregation paths forming a tree topology. Let xi denote the

readings of the ith-round sampling of a sensor network, with

element xij corresponding to sensor j’s reading, and Φ denote

an M × N measurement matrix, with the column vector φj

assigned to a sensor Pj , where the elements of Φ can be

chosen based on Gaussian distributions.

Here we use an example shown in Fig.1 to illustrate the

compressive data gathering process. Taking the subtree rooted

at P0 as an example. After all nodes obtain their readings at

the ith-round sampling, each node Pj multiplies its reading

xij by its coefficient vector φj . Then P3 and P4 send their

results φ3xi3 and φ4xi4 to P2. After receiving the results

from P3 and P4, P2 adds them with φ2xi2 and sends the

summation
∑4

j=2 φjxij to P1. Finally, P0 gets the aggregation

result
∑4

j=1 φjxij of this subtree. With the same approach,

the sink can obtain the aggregation result of the ith round

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1259



sampling of the whole network, which is,

yi = Φxi (2)

In traditional compressive data gathering, each sensor Pj is

preinstalled a random coefficient vector φj , or computes its

random coefficient vector based on a seed known to the sink

only, in order to avoid sending the measurement matrix Φ
from the sensors to the sink.

The CS theory demonstrates that when M satisfies

M ≥ cK log
N

K
(3)

where c is a positive constant, and the product Φ ·Ψ satisfies

the Restricted Isometry Property (RIP) [30], the sparse signal

s can be precisely recovered with a very high probability via

the �1-minimization:

s = min ‖s‖1, s.t.y = Θs (4)

where Θ = ΦΨ. The CS theory also states that if Φ
is random, Ψ is universal, which means that most random

matrix Φ can preserve RIP with a high probability; but the

reconstruction can be affected by Φ to certain degree.

In existing compressive data gathering approaches, the sum-

mation procedure at each sensor pj needs to add φjxij to the

summation results it receives. In the following, we show that

this aggregation procedure may cause potential information

leakage in the network because the coefficient matrix Φ can be

estimated by an adversary through statistical inference. With

a good estimation of the coefficient matrix, the attacker can

easily recover the signal x.

B. Security Model

Because of the common vulnerabilities of WSNs, an at-

tacker can capture and compromise a sensor easily. Thus the

attacker can get the summation of the subtree rooted at the

compromised node. For simplicity, we assume that there exists

one compromised node Nodec in the network.

����

Fig. 1. The basic diagram of data aggregation in a network of N sensors

We further assume that the attacker has the ability to

trigger events at arbitrary places in the network. Besides, we

assume that the attacker has the topology information of the

aggregation subtree rooted at the compromised node Nodec.

We also assume that the attacker has the domain knowledge

of Ψ. Specifically, Ψ could be learned from a training data

set collected by the compromised nodes or the attacker. We

adopt the following notations:

• xij : The reading of sensor Pj at the ith-round sampling.

• uij : The value of x(i+1)j − xij .

• yi: The aggregated result of the ith-round sampling at

the compromised node Nodec (excluding the reading of

Nodec). For example in Fig. 1, yi =
∑4

j=1 φjxij if P0

is the compromised node.

• vi: The result of yi+1 − yi.

IV. STATISTICAL INFERENCE ATTACKS

As suggested in (2), sensor readings are multiplied with the

measurement matrix Φ along the data aggregation paths in

compressive data gathering. If a sensor is compromised, the

aggregated results become available to the attacker. Observing

that the attacker could probably recover sensors’ readings

given the measurement matrix Φ and the domain knowledge

Ψ, we propose the following two attacks aiming to obtain the

measurement matrix Φ: controllable event triggering attack
(CETA), and random event triggering attack (RETA). These

two attacks are mainly based on the Least Square Estimation,

and the attacker can launch one that meets its ability.

A. Controllable Event Triggering Attack (CETA)

According to the security model proposed in Section III-B,

the attacker has the ability to trigger events at arbitrary places

in the network. Let Pj be the target sensor of the attacker to

trigger an event. Note that the attacker could trigger an event

around Pj but the impact of the event is limited to Pj only;

i.e., only Pj is affected by the event. This attack is termed

as controllable event triggering attack (CETA). For example,

the attacker can set a fire at Pj to increase the temperature

readings of Pj .

During each round of sampling, the attacker launches a

CETA attack at Pj once and gets a summation result yi at the

compromised node Nodec. After the attacker triggers c rounds

of the event, it can get c tuples of the data < x1j , y1 >, . . . ,

< xcj , yc >. We have

vi = yi+1 − yi =
∑
k∈S

φkuik + φjuij ≈ φjuij (5)

where S is the set of sensors on the aggregation subtree

(excluding the target node). Note that it is reasonable to

assume that the readings of the nodes in S remain almost

unchanged between two successive rounds of samplings; thus∑
k∈S φkuik ≈ 0.

����

���	
�����

��
�

�������
 �
����
� �����

Fig. 2. Controllable Event Triggering Attack. The attacker triggers an event at
the target sensor P2 in order to gain its measurement coefficients. Meanwhile,
it also compromises the sensor P0.
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For example in Fig.2, the attacker triggers an event around

target node P2 at each sampling round. This event can sig-

nificantly affect the reading of P2, but has no influence on

other sensors. The attacker also compromises P0 and thus it

can get the summation
∑4

j=1 φjxij of each sampling round.

P1, P3, P4 are in S and their readings stay almost unchanged

between two continuous sampling rounds. Thus the difference

of two continuous aggregation results is mainly caused by the

change of P2’s readings, which implies that vi = φ2ui2.

Note that some of the sensor readings may vary significantly

between two consecutive rounds of samplings. In order to

provide a good estimate of φ̂j , we propose the following

data filtering strategy: When triggering an event, the attacker

controls the influence of the event on Pj to ensure that

uij = C, where C is a constant. As a result, φjuij should

be a constant φjC too. We further define δ as the deviation

of the summations caused by all other sensor readings. Thus

if there is no other event occurring in the network during the

interval of collecting the summation yi and yi + 1, vi should

satisfy a Gaussian distribution N (φjC, δ
2), where δ could

be learned from the history data of the compromised node.

Let Med(V ) denote the median of all vis and Δ denote the

estimated value of 2δ. The attacker can simply maintain a data

set {vi | vi ∈ (Med(V ) − Δ,Med(V ) + Δ). Therefore the

data not in this set are very likely influenced by other unknown

events and thus should not be used to estimate φj .

Let R denote the data set and K denote the number of

elements in R. We have

vi = φjuij = φjC (6)

φ̂j =

∑
i∈R

vi

KC
(7)

When launching CETA at the target sensor Pj , the coeffi-

cient vector can be recovered through (7) accurately with the

help of the data filtering strategy. Furthermore, from (7), one

can see that CETA does not incur accumulative errors.

B. Random Event Triggering Attack (RETA)

According to the security model proposed in Section III-B,

the attacker can trigger events at a randomly chosen area

in the network. Such an attack is termed as Random Event

Triggering Attack (RETA). Specifically, the influence region

of the triggered event in RETA could be an area rather than

just one sensor. Let H denote the set of nodes in the influence

region of the event, and S denote the set of sensors ahead of

Pj on the aggregation path that participate in data aggregation

(the nodes in H do not belong to S).

The process of RETA is similar to CETA. During each

round of sampling, the attacker launches RETA once at a

randomly chosen area and gets a summation result yi at

the compromised node Nodec. Similarly, we assume that the

readings of the sensors in S vary in a limited range between

two successive rounds; thus the difference of the successive

summations is mainly caused by the reading changes of the

sensors in H .

����

���	
�����

��
�

�������
 �
����
� �����
�� ���� �
��

Fig. 3. Random Event Triggering Attack. The influence region of the
triggered event includes P2,P3 and P4.

After collecting enough data, the coefficient vectors of the

sensors ahead of the compromised node Nodec in the routing

tree could be recovered based on the multi-coefficient least

square theory. Specifically,

vi = yi+1 − yi =
∑

j∈S,H
φjuij =

∑
j∈H

φjuij (8)

After c rounds, we have

ΦM×|H|(H) Uc×|H|(H)T = VM×c(H) (9)

Based on the multi-coefficient least square estimate, Φ can

be estimated given that the number of sampling rounds c is

large enough

Φ(H)U(H)TU(H) = V (H)U(H) (10)

Φ(H) = V (H)U(H)(U(H)TU(H))−1 (11)

According to the derivations above, RETA does not pos-

sess accumulative errors because all coefficients are calculated

simultaneously without making use of the prior results. There-

fore RETA is also suitable for attacking large-scale sensor

networks.

V. THEORETICAL ANALYSIS

In this section, we analyzes the two attacks by conducting

error analysis based on the error transfer formula.

Given y = f(x1, . . . , xn), according to the total derivative

formula, the variance of y is:

σ2y =
n∑

i=1

(
∂f

∂xi
)2σ2xi

(12)

In the following we use this formula to analyze the accuracy

of the estimated measurement matrix of the two attacks.

A. Theoretical Analysis of CETA

Based on error transfer formula (12), the variance of φj is:

σ2
φ̂j

=
c∑

i=1

(
∂f

∂vi
)2σ2vi =

σ2vi
KC2

(13)

Considering that

vi =
∑
k∈S

φkuik (14)
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Let σu represent the standard deviation of the sensor read-

ings in the node set S, we have

σ2vi =
∑
k∈S

(
∂vi
∂uik

)2σ2u =
∑
k∈S

φ2kσ
2
u (15)

Through (13) and (15), we can obtain the variance of φj ,

σ2
φ̂j

. According to (13), the attacker could increase the constant

C to reduce its estimation error σ2
φ̂j

. Furthermore, the standard

deviation of each node’s estimated coefficient vector should

remain almost the same if the attacker keeps C unchanged

during the attack process in the network.

B. Theoretical Analysis of RETA

The error analysis of RETA, which takes advantage of the

multi-coefficient least square estimation, is mainly based on

the following theorem:
Theorem 5.1: Given n×1 vectors l1 = (1, 0, . . . , 0)T , l2 =

(0, 1, . . . , 0)T , . . . . . . , ln = (0, 0, . . . , 1)T , and n × 1 vectors

d1 = (d11, d12, . . . , d1n)
T , d2 = (d21, d22, . . . , d2n)

T , . . . . . . ,

dn = (dn1, dn2, . . . , dnn)
T , by solving the equations below:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

UTUd1 = l1

UTUd2 = l2
...

UTUdn = ln

(16)

we can obtain d11, d22, . . . , dnn. Then the coefficients,

calculated based on the multi-coefficient least square theory,

have the following standard deviations:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σφ1 = σv

√
d11

σφ2 = σv

√
d22

...

σφn = σv

√
dnn

(17)

Proof: The matrix U can be written as (U1, U2, . . . , Un),
where Ui is a n × 1 column vector; and (10) can be written

as: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ1[U
T
1 U1] + . . .+ φn[U

T
n U1] = V U1

φ1[U
T
1 U2] + . . .+ φn[U

T
n U2] = V U2

...

φ1[U
T
1 Un] + . . .+ φn[U

T
n Un] = V Un

(18)

Multiplying the ith equation with d1i, we obtain⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ1[U
T
1 U1]d11 + . . .+ φn[U

T
n U1]d11 = V U1d11

φ1[U
T
1 U2]d12 + . . .+ φn[U

T
n U2]d12 = V U2d12

...

φ1[U
T
1 Un]d1n + . . .+ φn[U

T
n Un]d1n = V Und1n

(19)

Adding up these equations, we have

n∑
r=1

φ1[U
T
1 Ur]d1r + . . .+

n∑
r=1

φn[U
T
n Ur]d1r =

n∑
r=1

V Urd1r

(20)

Then we select d11, d12, . . . , d1n satisfying:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
r=1

[UT
1 Ur]d1r = 1

n∑
r=1

[UT
2 Ur]d1r = 0

...
n∑

r=1

[UT
n Ur]d1r = 0

(21)

Note that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h11 = d11U11 + d12U12 + . . .+ d1nU1n

h12 = d11U21 + d12U22 + . . .+ d1nU2n

...

h1n = d11Un1 + d12Un2 + . . .+ d1nUnn

(22)

then (20) becomes:

φ1 =
n∑

r=1

V Urd1r

= v1(d11U11 + d12U12 + . . .+ d1nU1n)+

. . .+ vn(d11Un1 + d12Un2 + . . .+ d1nUnn)

= v1h11 + v2h12 + . . .+ vnh1n

(23)

where vi is the ith value of the vector V . Because

v1, v2, . . . , vn are independent and should have similar stan-

dard deviation, which is denoted by σv , we have

σ2φ1
= (h211 + h212 + . . .+ h21n)σ

2
v (24)

Based on (21) and (22), we get:

σ2φ1
= d11σ

2
v (25)

The proof of σφ2 , σφ3 , . . . , σφn is similar.

Let σvi denote the standard deviation caused by the variation

of uik, ∀k �∈ H, k ∈ S, we have

σ2vi =
∑

k �∈H,k∈S
(
∂vi
∂uik

)2σ2u =
∑

k �∈H,k∈S
φ2kσ

2
u (26)

Based on Theorem 5.1, we can solve (16) and calculate the

standard deviations through (17) and (26).

C. Evaluation of the Two Attacks

This section conducts both numerical study based on the

analysis in Section V and simulation study of the impact

of the two attack methods on compressive data gathering.

Specifically, we use a Gaussian random matrix as the measure-

ment matrix, and Orthogonal Matching Pursuit (OMP) [32] as

the reconstruction method, both of which are well accepted

in compressive sensing based data aggregation for wireless

sensor networks [32] [33] [42] [34].

In our simulation, we deploy 10k sensors in a line network

– actually, our method can be applied to any kind of tree

topology for data aggregation. The aggregation path we use
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in our simulation contains the first 512 nodes. The data of

sensor Pj at each sampling round is generated by dataj =
c

(2+0.05j)2 + ε, where c is a random number drawn from a

continuous uniform distribution on the interval (20, 25), and ε
is the stochastic error that is normally distributed with a mean

0 and a standard deviation 0.1. All the results are averaged

over 10 runs (at each run, we re-generate the constant c). When

the attacker launches a CETA attack, it first compromises the

sensor P512, then triggers events around each sensor from P0

to P511. By this way the attacker can successively obtain the

coefficient vector of each sensor. The process of RETA attack

is similar to CETA, except that the attacker triggers an event

in a certain area affecting multiple sensors.

We apply SNR [42] to represent the reconstruction effect:

SNR = 10log10

N∑
j=1

x2j

N∑
j=1

(xj − x̂j)2
(27)

where x̂i is the reconstructed data of sensor Pj .

Figs. 4(a) and 5(a) report the standard deviations of the

estimated coefficients based on our simulation study. One can

see that the simulated standard deviations of the estimated

coefficients of CETA and RETA are relatively stable. This

is because both attacks do not possess accumulative errors.

We also observe that the standard deviations of the estimated

coefficients of CETA are smaller according to Fig. 4(a),

compared with those in Fig. 5(a). This is because the attacker

filters the abnormal readings through an appropriate threshold

δ (we set δ = 0.1 in our simulation).
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Fig. 4. The coefficient standard deviations of CETA
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Fig. 5. The coefficient standard deviations of RETA

Figs. 4(b) and 5(b) report the numerical results of the

standard deviations of the coefficients based on the analysis

in Section V. One can see that the trends of the standard

deviations of CETA and RETA obtained from simulation study

agree with those of the numerical results in both Figs. 4 and

5. The numerical results of the standard deviations of CETA
and RETA are relatively stable as shown in Figs. 4(b) and

Fig. 5(b). These two figures indicate that the scale of wireless

sensor networks has little impact on CETA and RETA,

because they do not have accumulative errors.

Figs. 6(a) and 7(a) demonstrate the recovered signals by

the attacker with the estimated coefficients based on the two

attacks. Figs. 6(b) and 7(b) illustrate the recovered signals by

the sink node with the actual coefficients. We observe that the

signal recovered by the attacker is similar to that of the sink,

and the maximum reconstruction error is less than 0.5. This

indicates that the attacker can recover the original signal with

an acceptable fidelity.
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Fig. 6. The recovered signals by the attacker and the sink with CETA.
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Fig. 7. The recovered signal at the attacker and the sink with RETA.

Fig. 8 compares the MSE of the signals (for the 512 nodes)

recovered by the attacker and the sink. From these figures, one

can observe that i) the MSE recovered by the attacker and

the sink are very similar, which indicates that the attacker has

a similar ability to recover the original signal as the sink,

although the attacker only compromises one sensor in the

network; and ii) the MSE of most sensors is relatively small

(less than 0.05), which indicates that the attacker can recover

the original signal with high fidelity.

Fig. 9 demonstrates the quality of the signals reconstructed

by the attacker and the sink in terms of SNR. It is interesting

to observe that the SNR values of the attacker are close to

those of the sink (differ about 0.5dB). This suggests that the

two attacks are powerful enough to give the attacker sufficient

information to recover the original signal, making the attack

ability of the attacker comparable to that of the sink.
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Fig. 8. The MSE of the recovered signal.
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VI. COUNTERMEASURE

A. Analysis of The Statistical Inference Attacks

Due to the typically remote and hostile deployment environ-

ment, it is difficult to provide an effective physical protection

to sensors. In many cases, it is almost impossible to completely

prevent attackers from triggering events in the sensor network

or controlling the source of data aggregation. In order to

achieve secure and efficient data collection, we should make

compressive data gathering secure, rather than requireing more

external protection.

According to the security model introduced in Section III,

the confidentiality of the measurement matrix Φ is the key

to achieving secure compressive data gathering. Based on the

observation that the measurement matrices employed by the

existing approaches usually remain unchanged, an attacker

can collect a large number of samples and then estimate

the measurement matrix by statistical inference. Therefore if

we can change the measurement matrix wisely during data

aggregation, statistical inference based attacks could fail in

compressive data gathering.

B. Secure Compressive Data Gathering (SCDG)

Based on the analysis mentioned above, we propose a new

scheme called Secure Compressive Data Gathering (SCDG).

In SCDG, the measurement matrix is changed at each round

of data aggregation. SCDG contains two phases, which are

detailed as follows.

1) Broadcast of the Sink: The sink first generates a one-

way key chain {k1, k2, . . . , kn} in the following way: it

chooses kn randomly, and applies a secure one-way hash

function ki = F (ki+1) sequentially to generate the other keys.

According to the property of one-way hash functions, no one

can deduce ki+1 from ki. We assume that the sink and the

nodes in the network are loosely time synchronized. Time is

divided into intervals with a duration of Tint. At a time instant

t, the sink broadcasts an authenticated message containing

certain information to inform the nodes in the network to

collect data:

sink −→ nodes : message | t | Tint | δ
MACki(message | t | Tint | δ)

where MACki is the message authentication code based

on ki. After receiving the broadcast message, nodes cannot

authenticate the message right away because they do not know

the corresponding key ki. After a delay of δ, the sink reveals

the key ki to all the nodes. Once a node receives the key ki,
it can verify ki by applying kj = F i−j(ki), where kj is a key

received from the sink in the previous broadcast. Note that if

the broadcast message or the new key ki is received after a

long delay, the node must drop it because an adversary might

have altered it. After the key is verified, the node can then

authenticate the message. If both checks are successful, the

message is authentic and the node replaces kj with ki.

2) Data Aggregation at Each Node: We assume that each

node Pi shares with the sink a unique one-way hash key

chain {si1, si1, . . . , sin}, with sij = Hi(sij+1) (Hi is a one-

way hash function shared with the sink. At the beginning,

we assume each node Pi shares sin with the sink), and a

pseudo-random function Fi. Each key sij is used as a random

seed to generate a random coefficient vector for Pi. In order

to prevent the attacker from obtaining the random seed, the

sink broadcasts a notification message to the whole network

to change the seeds. Once the sensor receives this notification,

it applies sij = Hi(sij+1) to compute the next random seed,

which will be used by the sensor before the next notification.

From the next round Tk, Pi uses this seed to generate a new

random coefficient vector:

φi = Fi(sij , Tk) (28)
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According to this equation, the coefficient changes based on

the secret seed at each round.

Then Pi multiplies its reading xki with the coefficient

vector φi at the kth round, and transfers the result to the

subsequent node in the aggregation tree. At last, the sink

can get the aggregation result. As the sink stores the one-

way hash key chain, the pseudo-random functions at each

node, the time of changing the random seed, and the round of

data aggregation, it can easily re-generate the corresponding

measurement matrix at each timer interval to recover the

original sensor data.

C. Analysis on SCDG

According to the CS theory, the elements of the mea-

surement matrix should satisfy certain distributions such as

Gaussian distribution in order to keep RIP. We can easily find

a pseudo-random function Fi to use the secret key sij and the

timestamp Tk as seeds to generate random coefficients that

meet Gaussian distribution. Thus in SCDG, the φj calculated

from (28) can meet RIP actually.

In order to estimate the measurement matrix accurately,

the attacker should collect a large number of samples before

statistical inference. However, the measurement matrix is

changed after each round of data aggregation in SCDG and

thus collecting enough samples of one single measurement

matrix becomes impossible. Therefore the sensor network can

get rid of statistical inference attacks successfully.

Another important feature of SCDG is that the whole

security mechanism depends mainly on the one-way hash

function and the key chain. Without them, it is impossible for

the attacker to reconstruct the data all the time even though the

attacker gets the measurement matrix by some external help

occasionally, because after each time interval, Pi changes the

secret seed chosen from the one-way hash key chain once

it receives the changing-key notification from the sink. Since

each sensor just stores the function Hi, which is not shared

with others, the attacker can never get all the one-way hash key

chains and functions of all sensor nodes. On the other hand,

with the guarantee of the one-way property, the attacker can’t

recover the former coefficient vectors even if he gets the one-

way hash function. From this analysis, we claim that SCDG

can achieve secure compressive data gathering effectively.

In the following, we make a comparison between SCDG

and the original compressive data gathering scheme when the

two statistical inference attacks proposed in this paper exist.

We use the same network settings and data generation scheme

as in Section V-C. All the results are averaged over 20 runs.

Fig. 10 reports the comparison results in terms of the

standard deviations of the recovered signals between SCDG

and the original compressive data gathering scheme. We can

see that the new scheme recovers the signal with a little bit

higher standard deviation but still keeps the same magnitude.

We also apply SNR [42] to represent the reconstruction
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Fig. 10. Comparison of the standard deviation.

effect:

SNR = 10log10

N∑
j=1

x2j

N∑
j=1

(xj − x̂j)2
(29)

where x̂i is the reconstructed data at node Pj . From Fig. 10, we

observe that the SNR of the signal recovered through SCDG

is also just a little bit smaller than that of the original scheme.

In fact, this slight difference is reasonable. In the original ap-

proach, we can choose an optimized measure matrix for better

reconstruction because we keep use the same measurement

matrix. In SCDG, the measurement matrix changes all the

time and it is unavoidable to get a bad measurement matrix at

certain rounds. As mentioned in Section III, the measurement

matrix can affect the recovery precision.
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Fig. 11. Comparison of SNR.

VII. CONCLUSION

In this paper we have identified two statistical inference

attacks against compressive data gathering and show that

traditional approaches may suffer serious information leakage

under these attacks. In particular, we quantitatively analyze

the estimation error of compressive data gathering through

extensive statistical analysis, based on which we propose

a new compressive data aggregation scheme by adaptively

changing the measurement coefficients at each sensor and

correspondingly at the sink without the need of time synchro-

nization. In our analysis, we show that the proposed scheme
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could significantly improve the data confidentiality at a light

computational and communication overhead.
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